Short note (EC+ β ⁺) decay of ¹³⁰Nd and ¹⁴⁰Tb

Xu Shuwei^a, Xie Yuanxiang, Yu Yong, Li Zhankui, Pan Qiangyan, Wang Chunfang, Xing Jianping, and Zhang Tianmei

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

Received: 15 March 2000 / Revised version: 25 May 2000 Communicated by D. Schwalm

Abstract. ¹³⁰Nd and ¹⁴⁰Tb were produced by irradiation of ⁹⁶Ru and ¹⁰⁶Cd with ³⁶Ar. The two nuclides were identified and studied by using a He-jet fast tape transport system in combination with X- γ and γ - γ coincidence measurements. The half-life of ¹³⁰Nd was determined to be 13 ± 3 s. The (EC+ β ⁺) decay scheme of ¹³⁰Nd was proposed for the first time, and the spins and parities of the ground state and observed low-lying states in the daughter nucleus ¹³⁰Pr were tentatively assigned. The previous (EC+ β ⁺) decay scheme of ¹⁴⁰Tb was revised, and the spin and parity of its ground state were assigned to be 7⁺.

PACS. 23.40.-s β decay; double β decay; electron and muon capture – 23.20.Lv Gamma transitions and level energies – 21.60.Cs Shell model

The half-life of the EC/ β^+ decay of ¹³⁰Nd was reported as 28±3 s by Bogdanov *et al.* [1] in 1977, which is the only information about the decay of ¹³⁰Nd known so far. According to the mass predictions made by Audi *et al.* [2], ¹⁴⁰Tb is the lightest bound isotope of terbium and very close to the proton-drip line in nuclear chart. The EC/ β^+ decay of ¹⁴⁰Tb was previously studied by Firestone *et al.* [3] in 1991, including the half-life of 2.4 s and two decay γ lines. In addition, the ground-state spin and parity of ¹⁴⁰Tb were tentatively assigned as 5⁺ [3]. The in-beam γ study of ¹⁴⁰Gd was published by Paul *et al.* in 1989 [4].

The experiment described here was carried out at the SFC accelerator of IMP, Lanzhou, China. A 220 MeV 36 Ar¹¹⁺ beam from the cyclotron entered a target chamber filled with 1 atm. helium, passing through a $1.94 \,\mathrm{mg/cm^2}$ thick Havar window and a degrader, and finally bombarded a $2.8\,\mathrm{mg/cm^2}$ thick $^{96}\mathrm{Ru}$ target (94%) enriched) with a 0.3 mg/cm^2 aluminum backing to produce ¹³⁰Nd, or bombarded a self-supported 2.5 mg/cm^2 thick 106 Cd target (75% enriched) to produce 140 Tb. The beam intensity was about $0.5 e \mu A$. We used a He-jet in combination with a tape-transport system to move the radioactivity into a shielded counting room. PbCl₂ was used as aerosol at 430 °C. The γ -rays from the reaction products were measured up to 2.0 MeV by using two coaxial HpGe(GMX) detectors. A HpGe planar detector was used for X-ray measurements. The γ - γ -t or X- γ -t coincidence events were collected event-by-event on magnetic tapes.

¹³⁰Nd: Besides the intense γ lines in the decay of ¹²⁹Nd [5], four other intense γ lines of 92.2, 120.3, 121.5, and 140.5 keV were found in the γ spectrum gated on Pr- K_{α} X-rays in the ³⁶Ar + ⁹⁶Ru reaction. Comparing the excitation functions of the four γ lines with that of the 91.1 keV γ line, an intense γ line in the decay of ¹²⁹Nd (fig. 1), we assigned the four γ lines to the decay of ¹³⁰Nd. From the time spectra of the four intense γ lines (fig. 2), the weighted average half-live of ¹³⁰Nd was determined to be 13 ± 3 s which, however, is different from the result

Fig. 1. Excitation functions of the intense γ -rays in the decay of ¹³⁰Nd.

^a e-mail: xsw@ns.lzb.ac.cn

436

Fig. 2. Half-lives of four intense γ -rays in the decay of ¹³⁰Nd.

 28 ± 3 s given by Bogdanov *et al.* [1] within the experimental errors. The observed weak γ lines of ¹³⁰Nd were assigned by the coincidence measurements with the $Pr-K_{\alpha}$ X-rays and with already assigned intense γ -rays of ¹³⁰Nd. The observed γ -ray intensities mainly from γ -singles measurements as well as the γ - γ coincidence relations in ¹³⁰Nd decay are listed in table 1, which leads us to suggest the decay scheme shown in fig. 3. The $Q_{\rm EC}$ value in fig. 3 is a systematic prediction made by Audi et al. [2]. From the decay scheme of ¹³⁰Nd, we try to deduce some nuclearstructure information related to the low-spin states in the daughter nucleus ¹³⁰Pr, which is unable to be provided with in-beam measurements. The ground-state spins and parities of 131 Pr and 129 Ce were reported as $3/2^+$ [6] and $5/2^+$ [7], respectively. In addition, two lowest-energy excited states with the spins and parities of $1/2^+$ and $3/2^+$ in 129 Ce were also found [7]. Therefore, we assumed the ground-state spin and parity of 130 Pr to be 4^+ , and the spins and parities of its two low-lying, 92.2 and 140.7 keV states to be 3^+ and 2^+ , respectively. Based on the selection rule of β -allowed transition, all allowed β -transitions from the 0^+ ground state of the even-even ¹³⁰Nd must feed 1^+ states in ¹³⁰Pr. The rest of low-lying states of 130 Pr in fig. 3 were then assumed to be 1⁺states. Finally, the multipolarities of all γ transitions were proposed and the contribution from internal conversion electron for each transition between the low-lying states in 130 Pr was corrected [8]. According to the upper limits of side feeding to each level $(I_{EC+\beta^+}^{ul})$ via $(EC+\beta^+)$ decay in fig. 3 the lower

Fig. 3. Proposed decay scheme of 130 Nd: the intensity of each transition includes the correction of internal conversion electron.

Table 1. The $\gamma\text{-transitions}$ and their coincidence relationships in the decay of $^{130}\mathrm{Nd}.$

$E_{\gamma}^{*} \; (\text{keV})$	I_{γ}	Coincident relations
48.5	10(2)	56.5, 92.2, 104.8, 120.3,
		121.5, 161.2
56.5	7(2)	48.5, 92.2, 140.5
72.1	7(2)	92.2
92.2	100	48.5, 56.5, 72.1, 96.6,
		104.8, 120.3, 121.5, 161.2,
		196.6, 208.9, 329.8, 340.6
96.6	9(2)	92.2
104.8	12(2)	48.5, 92.2, 140.5, 196.6
120.3	39(4)	48.5, 92.2, 140.5
121.5	27(3)	48.5, 92.2, 140.5, 161.2
140.5	47(5)	56.5, 104.8, 120.3, 121.5, 161.2
161.2	31(3)	48.5, 92.2, 121.5, 140.5
196.6	16(2)	48.5, 92.2, 104.8, 140.5
208.9	21(2)	92.2
329.8	23(2)	92.2
340.6	19(2)	92.2
	· · ·	

(*) Energy uncertainty is $\pm 0.2 \,\mathrm{keV}$.

limits of the log ft values (log ft^{ll}) shown in the right part of fig. 3 were calculated with the table of Gove and Martin [9]. On the one hand, the upper limits of side feeding to the 92.2 and 140.7 keV levels are close to zero. Therefore, the β -transitions feeding to the two levels should be forbidden. On the other hand, the lower limits of the log ft (7⁺) ¹⁴⁰Tb _{2.1 s}

Table 2. The γ -transitions and their coincidence relationships in the decay of 140 Tb.

E_{γ}^{*} (keV)	I_{γ}	Coincident relations
328.7	100	355.0, 385.0, 507.8, 568.1,
		600.2, 625.4, 628.0, 675.9,
		718.0, 740.0
355.0	16(6)	328.7, 385.0, 625.4, 713.8,
385.0	22(5)	328.7, 355.0, 568.1, 600.2
		625.4, 718.0
507.8	57(13)	328.7, 628.0, 675.9
568.1	18(7)	328.7, 385.0, 600.2, 713.8
600.2	24(10)	328.7, 385.0, 568.1, 713.8
625.4	18(7)	328.7, 355.0, 385.0, 718.0
		740.0
628.0	52(9)	328.7, 507.8, 675.9
675.9	21(6)	328.7, 507.8, 628.0
713.8	14(4)	355.0, 568.1, 600.2
718.0	16(6)	328.7, 355.0, 385.0, 625.4
740.0	10(3)	328.7,625.4

(*) Energy uncertainty is $\pm 0.2 \,\mathrm{keV}$.

Fig. 4. Proposed decay scheme of ¹⁴⁰Tb.

values for the rest of low-lying states of 130 Pr in fig. 3 are less than 5.9, most probably the β -transitions populating those states are allowed. It should be noted that these two conclusions are self-consistent with the above spin-parity assumptions of the low-lying states of 130 Pr in fig. 3. In other words, the spin-parity speculations are reasonable. However, the apparent β intensities and log ft values in fig. 3 almost certainly change once complete spectroscopy data will become available, the spin-parity speculations should be further tested in a later experiment.

¹⁴⁰**Tb**: The observed γ lines of ¹⁴⁰Tb were assigned by the coincidence measurements with $Gd-K_{\alpha}$ X-rays in the ${}^{36}Ar + {}^{106}Cd$ reaction as well as based on the in-beam study of ¹⁴⁰Gd [4]. The weighted average half-life of intense γ lines in the decay of ¹⁴⁰Tb was determined to be 2.1(4) s, which is consistent with the previous result 2.4 s [3] within the experimental errors. The observed γ -ray intensities and the γ - γ coincidence relations in ¹⁴⁰Tb decay are listed in table 2. The proposed (EC+ β^+) decay scheme of ¹⁴⁰Tb is shown in fig. 4, including the yrast band and a γ -vibrational band with $k = 2^+$ in the low-lying states of ¹⁴⁰Gd [10]. The $Q_{\rm EC}$ value in fig. 4 is a systematic prediction made by Audi et al. [11]. The lower limits of the log ft values for the 6^+ , 7^+ , and 8^+ states of 140 Gd in fig. 4 are less than 5.9. According to the empirical rules for spin and parity assignments based on $\log ft$ values [12], the ground-state spin and parity of 140 Tb were then assigned to 7^+ rather than the 5^+ assignment by

Firestone et al. [3]. Our assignment as predicted by Möller and Firestone [13] is composed of a $\nu 9/2^-$ and a $\pi 5/2^$ quasi-particle with quadrupole deformation $\varepsilon_2 = 0.208$.

This work was supported by the National Natural Science Foundation of China(19975057) and Chinese Academy of Sciences.

References

- 1. P.D. Bogdanov, A.V. Demyanov, Karnaukhov et al., Nucl. Phys. A **275**, 229 (1977).
- 2. G. Audi, O. Bersillon, J. Blachot et al., Nucl. Phys. A 624, 1(1997).
- 3. R.B. Firestone, J. Gilat, J.M. Nitshke et al., Phys. Rev. C **43**, 1066 (1991).
- E.S. Paul, K. Ahn, D.B. Fossan et al., Phys. Rev. C 39, 4. 153(1989).
- 5. A. Gizon, J. Genevey, Gh Cata-Danil et al., Z. Phys. A **358**, 369 (1997).
- 6. Yu.V. Sergeekov, Yu.L. Khazov, T.W. Burrows et al., Nucl. Data Sheets 72, 604 (1994).
- 7. Y. Tendow, Nucl. Data Sheets 77, 757 (1996).
- 8. F. Rösel, H.M. Fries, K. Alder et al., At. Data Nucl. Data Tables **21**, 91 (1978).
- 9. N.B. Gove, M.J. Martin, Nucl. Data Tables 10, 206 (1971).
- 10. L.K. Peker, Nucl. Data Sheets 73, 261 (1993).
- 11. G. Audi, A.H. Wapstra, Nucl. Phys. A 565, 1 (1993).
- 12. S. Raman, N.B. Gove, Phys. Rev. C 7, 1995 (1973).
- 13. P. Möller, J.R. Nix, K.-L. Kratz, At. Data and Nucl. Data Tables 66, 131 (1997); R.B. Firestone, Table of Isotopes, edited by V.S. Shirley et al., 8th ed. Vol. II (Wiley, New York, 1996) Appendices H.